SoK: Security Concerns in Quantum Machine Learning as a Service

Satwik Kundu, Ph.D. Candidate, Penn State <u>satwik@psu.edu</u> Advisor: Dr. Swaroop Ghosh

Quantum Neural Networks

Classical vs Quantum?

Learning with Classical Hardware

An example of Neural Network (NN)

1) Two Hidden(H) layers:

40 weights and 11 biases.

- 2) Input layer:
 - 3-dimensional real vector space.
- 3) Matrix operation (first H layer):
 - $z = x \cdot w + b$, where $w \in \mathbb{R}^{3 \times 4}$, $b \in \mathbb{R}^{4}$
- 4) Non-linearity:

Activation like sigmoid $s(x) = \frac{1}{1+e^{-x}}$

Learning with Quantum Hardware

An example of Quantum NN

Two Unitaries:
Can have 3 parameters each.

2) Input layer:

 2^3 -dimensional complex vector space.

3) Matrix operation (U_1) : $|\psi_1\rangle = U_1 |\psi_0\rangle$, where $U_1 \in \mathbb{C}^{2^3 \times 2^3}$

4) Non-linearity:

3

Measurement and conditioned unitary.

ate Arthur Pesah, et al. "Absence of barren plateaus in quantum convolutional neural networks." Physical Review X 11.4 (2021): 041011.

Quantum Cloud Services

Provider	Qubit Technology	Cost
IBM Quantum	Superconducting	\$1.6/sec
rigetti	Superconducting	\$0.00090/shot + \$0.30000/task
OQC	Superconducting	N/A
IQM	Superconducting	\$0.00145/shot + \$0.30000/task
Computing Inc.	Neutral Atom	\$0.01000/shot + \$0.30000/task
	Photonic	N/A
	Trapped-ion	\$0.03000/shot + \$0.30000/task
QUANTINUUM	Trapped-ion	N/A

QMLaaS Overview

(Step-1) Data Pre-Processing

- NISQ devices struggle with large images: limited qubits, high error rates and complex data encoding.
- Dimensionality Reduction: reduce input data size.
 - PCA, LDA, Autoencoders, Resize, etc.
- Normalization: to prevent feature overlap in quantum encoding.
 - Min-max, max-absolute, etc.

(Step-2) Design and Encode

[1] Sukin Sim et al. "Expressibility and entangling capability of parameterized quantum circuits for hybrid quantum-classical algorithms." *Advanced Quantum Technologies* 2, no. 12 (2019)

(Step-3) Transpile and Map

(Step-4) Execute and Measure

(Step-5 & 6) Gradient Calculation & Optimization

QMLaaS Pipeline

Why is QMLaaS at risk?

Interdependence on both classical and quantum resources.

Training QML Models is Expensive.

High Training Cost QPUs are 2300X more expensive compared to GPUs.

High Training Time Toy QNNs can take days to train on real hardware (long queues).

Training/Testing Data

Highly sensitive & expensive to acquire and process.

Assets in QMLaaS

Data Encoding Circuit

Extensive evaluation, novel technique, encodes sensitive data.

PQC Architecture

Trained parameters, designing PQC is time consuming, IP.

Threats to Confidentiality

Classical Cloud Threat? Data Theft Attacks When? Raw Data \rightarrow Data Pre-processing Normalized Features \rightarrow Encode & Design Measured Data \rightarrow Post-processing Post-processing \rightarrow User

Threats to Integrity

Classical Cloud

Threat?

Data Poisoning Attacks

When?

Raw Data \rightarrow Data Pre-processing

Normalized Features \rightarrow Encode & Design

Measured Data \rightarrow Post-processing

Quantum Cloud

Threats?

Circuit Obfuscation Attacks Fault Injection Attacks Side-Channel Attacks Low-quality Hardware Allocation When? Transpiled Circuit → Quantum Hardware

Threats to Availability

Classical Cloud

Threat?

Denial-of-Service Attacks

Latency Injection Attacks

When?

Normalized Features \rightarrow Encode & Design

Post-processing \rightarrow User

Threats in QMLaaS Pipeline

Conclusion

- QMLaaS (Quantum Machine Learning as a Service) is a promising hybrid model combining classical and quantum resources.
- Our work provides a comprehensive overview of each QMLaaS framework component.
- We identify critical security concerns specific to the hybrid QMLaaS architecture.
- Addressing these security challenges is essential for secure, reliable QMLaaS deployment.

